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Learning targets

Learning targets

• Introducing 𝑆𝑈 3  symmetry: adding an 𝑠 quark to the mix

• Generators of 𝑆𝑈 3  symmetry and link to 𝑆𝑈 2 : ladder operators

• How to combine quarks 𝑢, 𝑑, 𝑠  and antiquarks *𝑢, 𝑑̅, 𝑠̅  into mesons and baryons 

• Classification of hadrons based on their quantum numbers and link to experiment
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Recap: isospin, quarks, antiquarks, mesons, and baryons

• The 𝑢, 𝑑 quarks and *𝑢, 𝑑̅ antiquarks are represented as isospin doublets

• Note the " − “ sign: the ordering and minus sign in the antiquark doublet ensures that antiquarks and 

quarks transform in the same way (𝑞! = 𝑈𝑞, *𝑞! = 𝑈*𝑞)

• important if we want physical predictions to be invariant under 𝑢 ↔ 𝑑 and $𝑢 ↔ 𝑑̅

• Two types of hadrons: baryons (𝑞𝑞𝑞) and mesons (𝑞*𝑞)
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Antiquarks and mesons (𝒖 and 𝒅)

• Consider the effect of ladder operators on the antiquark isospin states:

• The effect of the ladder operators on antiparticle isospin states are

• To be compared with the same operation on quarks
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Light 𝒖𝒅 mesons

• We can now construct meson states from combinations of up and down quarks

• Consider the 𝑞*𝑞 combinations in terms of isospin

• Where the bar in | 4"
# , +

"
# 	 indicates this is the isospin representation of an antiquark
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Light 𝒖𝒅 mesons

• To obtain the 𝐼$ = 0 states we use the ladder operators and orthogonality

• Orthogonality gives
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𝑇#| ⟩1, +1 = 𝑇#[−𝑢𝑑̅]

 2| ⟩1,0 = −𝑑𝑑̅ + 𝑢-𝑢

⟹	 | ⟩1,0 = !
"
(𝑢-𝑢 − 𝑑𝑑̅) 

| ⟩0,0 = !
"
(𝑢-𝑢 + 𝑑𝑑̅) 



Light 𝒖𝒅 mesons

• To summarize

• Gives a triplet of 𝐼 = 1 states and a singlet of 𝐼 = 0 state

• Usually written as 2⨂ *2 = 3⨁1 

• 2 stands for a quark doublet

• $2 stands for an antiquark doublet
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Light 𝒖𝒅 mesons

• To show that the state obtained from orthogonality with ⟩|1,0  is a singlet we can use ladder operators

• Similarly

• A singlet state is a “dead-end” from the point of view of ladder operators 

8

𝑇$| ⟩0,0 = 𝑇$
!
"
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"
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𝑇#| ⟩0,0 = 0



𝑺𝑼(𝟑) flavour

• Extend these ideas to include the strange quark

• since 𝑚! 95	MeV > 𝑚", 𝑚# 2.2,4.7	MeV  there is no exact symmetry

• but 𝑚! is not very different from 𝑚", 𝑚# and we can treat the strong interaction and resulting hadron states as 

if it were symmetric under 𝑢 ↔ 𝑑 ↔ 𝑠

• note: any results obtained from this assumption are only approximate as the symmetry is not exact

• The assumed 𝑢𝑑𝑠 flavour symmetry can be expressed as
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𝑺𝑼(𝟑) flavour

• The 3×3 unitary matrix depends on 9 complex numbers (18 real parameters)

• there are 9 constraints from 6𝑈%𝑈 = 1

• ⟹ we can form 18 − 9 = 9 linearly independent matrices

• these matrices form a 𝑈 3  group

• As was the case for 𝑈 2  one matrix is simply the identity matrix multiplied by a complex phase and is 

of no interest in the context of flavour symmetry

• The remaining 8 matrices have det𝑈 = 1 and form an 𝑆𝑈 3  group

• The 8 matrices and the Hermitian generators are:
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𝑺𝑼(𝟑) flavour: 𝒖, 𝒅, and 𝒔

• In 𝑆𝑈(3) flavour, the three quark states are represented by

• In 𝑆𝑈(3), the 𝑢𝑑𝑠 flavour symmetry contains 𝑆𝑈 2  𝑢𝑑 flavour symmetry which allows us to write the 

first three matrices

• For 𝑢 ↔ 𝑑 we have the following matrices
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𝑢 ↔ 𝑑



𝑺𝑼(𝟑) flavour: 𝒖, 𝒅, and 𝒔

• The third component of the isospin is now written as

    with 

• 𝐼$ “counts” the number of 𝑢 quarks minus the number of 𝑑 quarks in a state

• As before ladder operators
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𝑇± =
!
"
𝜆! ± 𝑖𝜆"

𝐼* =
!
"
𝜆*

𝐼*𝑢 = + !
"
𝑢, 	 𝐼*𝑑 = − !

"
𝑢, 	 𝐼*𝑠 = 0



𝑺𝑼(𝟑) flavour: 𝒖, 𝒅, and 𝒔

• Now consider the matrices corresponding to the 𝑢 ↔ 𝑠 and 𝑑 ↔ 𝑠

• Hence in addition to 𝜆$ there are two other traceless diagonal matrices

• However, the three diagonal matrices are not independent
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𝑢 ↔ 𝑠

𝑑 ↔ 𝑠



𝑺𝑼(𝟑) flavour: 𝒖, 𝒅, and 𝒔
• Define the eighth matrix, 𝜆&, as a linear combination

    which specifies the “vertical position” in the 2D plane

• We only need two axes (quantum numbers) to specify a state in the 2D plane: 𝐼$, 𝑌  
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𝑺𝑼(𝟑) flavour: 𝒖, 𝒅, and 𝒔
• The other 6 matrices form 6 ladder operators which step between the states
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𝑺𝑼(𝟑) flavour: 𝒖, 𝒅, and 𝒔
• The eight Gell-Mann matrices
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𝑢 ↔ 𝑑

𝑢 ↔ 𝑠

𝑑 ↔ 𝑠



Quarks and antiquarks in 𝑺𝑼(𝟑) flavour

• The antiquarks have opposite 𝑆𝑈 3  flavour quantum numbers

17

d u

s

du

s

Quarks

Antiquarks



𝑺𝑼 𝟑  ladder operators

• The 𝑆𝑈 3  𝑢𝑑𝑠 flavour symmetry contains 𝑢𝑑, 𝑢𝑠,	and 𝑑𝑠 𝑆𝑈 2  symmetries

• Consider the 𝑢 ↔ 𝑠 symmetry “V-spin”, which has the associated 𝑠 → 𝑢 ladder 

operator
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𝑺𝑼 𝟑  ladder operators

• The effects of the six ladder operators are

• All other combinations give 0
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Light 𝒖𝒅𝒔 mesons

• Use the ladder operators to construct 𝑢𝑑𝑠 mesons from the nine possible 𝑞*𝑞 states

• The three central states, having 𝑌 = 0 and 𝐼$ = 0 can be obtained using the ladder operators and 

orthogonality
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Light 𝒖𝒅𝒔 mesons

• Starting from the outer states we can reach the center in six ways

• Only two of these six states are linearly independent

• But there are three states with 𝑌 = 0 and 𝐼$ = 0

• One state is not part of the same multiplet ⟹ cannot be reached 

with ladder operators
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Light 𝒖𝒅𝒔 mesons

• First form two linearly independent orthogonal states from

• If the 𝑆𝑈 3  flavour symmetry were exact, the choice of states wouldn`t matter

• However, 𝑚(̅ > 𝑚)*, 𝑚 +, and the symmetry is only approximate

• Experimentally observe three light mesons with 𝑚~140	MeV: 𝜋-, 𝜋., 𝜋/

• Identify one state (the 𝜋.) with the isospin triplet (derived previously)
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𝜓? =
1
2
𝑢"𝑢 − 𝑑𝑑̅



Light 𝒖𝒅𝒔 mesons

• The second state can be obtained by taking the linear combination of the other two states which is 

orthogonal to the 𝜋.

    with orthogonality:

• The final state (which is not part of the same multiplet) can be obtained by requiring in to be 

orthogonal to 𝜓" and 𝜓#
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𝜓@ = 𝛼 𝑢"𝑢 − 𝑠𝑠̅ + 𝛽 𝑑𝑑̅ − 𝑠𝑠̅

𝜓@ =
1
6
𝑢"𝑢 + 𝑑𝑑̅ − 2𝑠𝑠̅

𝜓? 𝜓@ = 0, 𝜓@ 𝜓@ = 1

𝜓E =
1
6
𝑢"𝑢 + 𝑑𝑑̅ + 𝑠𝑠̅ − 𝐬𝐢𝐧𝐠𝐥𝐞𝐭



• It is easy to check that 𝜓$ is a singlet state using the ladder operators

    which confirms that                                             is a “flavourless” singlet

• Therefore, the combination of quark and antiquark yields nine states which break down into an 

octet and a singlet

• In the language of group theory: 3⨂ *3 = 8⨁1

Light 𝒖𝒅𝒔 mesons
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𝑇&𝜓E = 𝑇'𝜓E = 𝑈&𝜓E = 𝑈'𝜓E = 𝑉&𝜓E = 𝑉'𝜓E = 0

𝜓$ =
1
6
𝑢*𝑢 + 𝑑𝑑̅ + 𝑠𝑠̅



• Compare with combinations of two spin-half particles 2⨂ *2 = 3⨁1

 

• These spin triplet states are connected by ladder operators just as the meson 𝑢𝑑𝑠 octet states are 

connected by 𝑆𝑈 3  ladder operators

• The singlet state carries no angular momentum – in this sense the 𝑆𝑈 3  flavour singlet is “flavourless”

Light 𝒖𝒅𝒔 mesons

25

Triplet of spin-one states:	| ⟩1, −1 , | ⟩1,0 , | ⟩1, +1

  Singlet of spin-one state:	| ⟩0,0



• Because 𝑆𝑈 3  flavour is only approximate, the physical states with 𝐼$ = 0, 𝑌 = 0 can be mixtures of the 

octet and singlet states

• Empirically we find:

 

Pseudoscalar mesons (𝑳 = 𝟎, 𝑺 = 𝟎, 𝑱 = 𝟎, 𝑷 = −𝟏)
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Masses:



• For the vector mesons the physical states are found to be approximately “ideally mixed”

 

Vector mesons (𝑳 = 𝟎, 𝑺 = 𝟏, 𝑱 = 𝟏, 𝑷 = −𝟏)
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Masses:



• We already saw that constructing baryon states is a fairly tedious process when we derived the proton 

wavefunction

• Concentrate on multiplet structure rather than deriving all the wavefunctions

• Everything that is done here is relevant to the treatment of color in the future (next semester)

• Once again start by combining two quarks

Combining 𝒖𝒅𝒔 quarks to form baryons
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• Yields a symmetric sextet and antisymmetric triplet 3⨂3 = 6⨁*3: same “pattern” as the antiquark 

representation

• Now add the third quark

Combining 𝒖𝒅𝒔 quarks to form baryons

29



• Best considered in two parts, building on the sextet and triplet

• Again, concentrate on the multiplet structure (for the wavefunction discussions refer to the discussion 

of proton wavefunction

1. Building on the sextet: 3⨂6 = 10⨁8

Combining 𝒖𝒅𝒔 quarks to form baryons
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2. Building on the triplet: 3⨂6 = 8⨁1 (same as the case of 𝑢𝑑𝑠 mesons)

Combining 𝒖𝒅𝒔 quarks to form baryons
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• We can verify the singlet wavefunction is indeed a singlet by using ladder operators

• In summary, the combination of three 𝑢𝑑𝑠 quarks decomposes into:

Combining 𝒖𝒅𝒔 quarks to form baryons
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𝑇&𝜓GHIJKLM =
1
6
𝑢𝑢𝑠 − 𝑢𝑠𝑢 + 𝑢𝑠𝑢 − 𝑢𝑢𝑠 + 𝑠𝑢𝑢 − 𝑠𝑢𝑢 = 0

𝜓GHIJKLM =
1
6
𝑢𝑑𝑠 − 𝑢𝑠𝑑 + 𝑑𝑠𝑢 − 𝑑𝑢𝑠 + 𝑠𝑢𝑑 − 𝑠𝑑𝑢

3E3E3 = 3E 6F3 =10F8F8F1



• The baryon states 𝐿 = 0  are the spin-𝟑/𝟐 decuplet of symmetric flavour and symmetric spin 

wavefunctions 𝜙 𝑆 𝜒(𝑆)

Baryon decuplet (𝑳 = 𝟎, 𝑺 = 𝟑/𝟐 , 𝑱 = 𝟑/𝟐 ,𝑷 = +𝟏)
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• The spin-1/𝟐 octet is formed from mixed-symmetry flavour and mixed-symmetry spin wavefunctions

Baryon octet (𝑳 = 𝟎, 𝑺 = 𝟏/𝟐 , 𝑱 = 𝟏/𝟐 ,𝑷 = +𝟏)
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𝛼𝜙 𝑀+ 𝜒 𝑀+ + 𝛽𝜙 𝑀, 𝜒(𝑀,) 

(see previous discussion of proton to see how to obtain wavefunctions)



Summary of Lecture 12
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Main learning outcomes

• Using the approximate 𝑆𝑈 3  symmetry of the Standard Model to construct meson and baryon states

• How to combine quarks 𝑢, 𝑑, 𝑠  and antiquarks *𝑢, 𝑑̅, 𝑠̅  into mesons and baryons 

• Classification of hadrons based on their quantum numbers and link to experiment


