

Particle Physics I

Lecture 12: Symmetries and the Quark Model II

Prof. Radoslav Marchevski
November 26th 2024

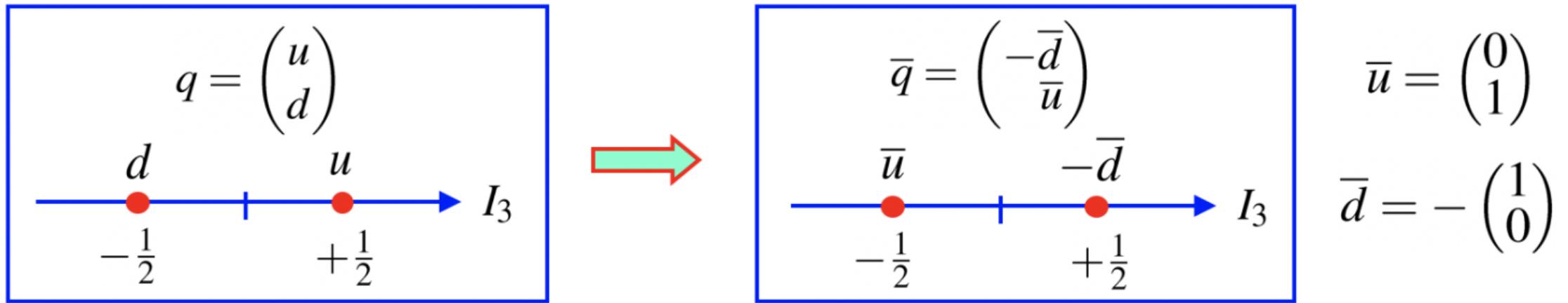
Learning targets

Learning targets

- Introducing $SU(3)$ symmetry: adding an s quark to the mix
- Generators of $SU(3)$ symmetry and link to $SU(2)$: ladder operators
- How to combine quarks (u, d, s) and antiquarks ($\bar{u}, \bar{d}, \bar{s}$) into mesons and baryons
- Classification of hadrons based on their quantum numbers and link to experiment

Recap: isospin, quarks, antiquarks, mesons, and baryons

- The u, d quarks and \bar{u}, \bar{d} antiquarks are represented as isospin doublets



- Note the " - " sign: the ordering and minus sign in the antiquark doublet ensures that antiquarks and quarks transform in the same way ($q' = Uq$, $\bar{q}' = U\bar{q}$)
 - important if we want physical predictions to be invariant under $u \leftrightarrow d$ and $\bar{u} \leftrightarrow \bar{d}$
- Two types of hadrons: **baryons** (qqq) and **mesons** ($q\bar{q}$)

Antiquarks and mesons (u and d)

- Consider the effect of ladder operators on the antiquark isospin states:

$$T_+ \bar{u} = T_+ \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = -\bar{d}$$

- The effect of the ladder operators on antiparticle isospin states are

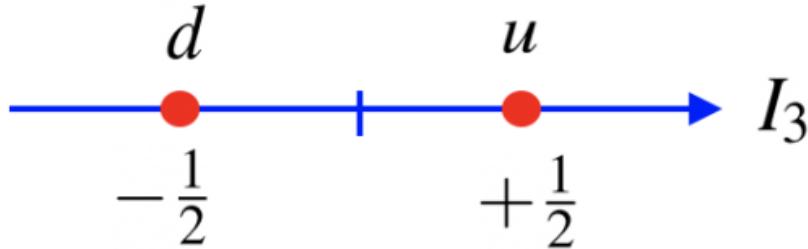
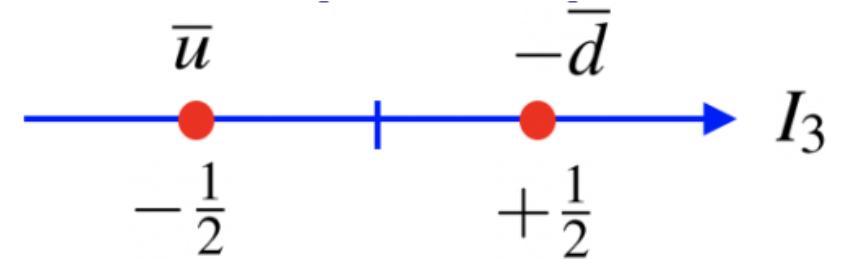
$$T_+ \bar{u} = -\bar{d}, \quad T_+ \bar{d} = 0, \quad T_- \bar{u} = 0, \quad T_- \bar{d} = -\bar{u}$$

- To be compared with the same operation on quarks

$$T_+ u = 0, \quad T_+ d = u, \quad T_- u = d, \quad T_- d = 0$$

Light ud mesons

- We can now construct meson states from combinations of up and down quarks



- Consider the $q\bar{q}$ combinations in terms of isospin

$$|1, +1\rangle = \left| \frac{1}{2}, +\frac{1}{2} \right\rangle \left| \overline{\frac{1}{2}, +\frac{1}{2}} \right\rangle = -ud\bar{d}$$

$$|1, -1\rangle = \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \left| \overline{\frac{1}{2}, -\frac{1}{2}} \right\rangle = d\bar{u}u$$

- Where the bar in $\left| \overline{\frac{1}{2}, +\frac{1}{2}} \right\rangle$ indicates this is the isospin representation of an antiquark

Light ud mesons

- To obtain the $I_3 = 0$ states we use the ladder operators and orthogonality

$$T_- |1, +1\rangle = T_- [-u\bar{d}]$$

$$\sqrt{2} |1, 0\rangle = -d\bar{d} + u\bar{u}$$

$$\Rightarrow |1, 0\rangle = \frac{1}{\sqrt{2}} (u\bar{u} - d\bar{d})$$

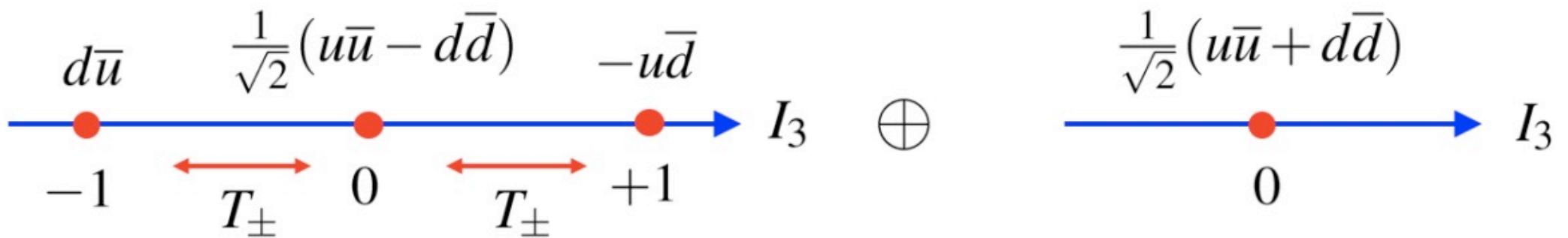
- Orthogonality gives

$$|0, 0\rangle = \frac{1}{\sqrt{2}} (u\bar{u} + d\bar{d})$$

Light ud mesons

- To summarize

- Gives a **triplet** of $I = 1$ states and a **singlet** of $I = 0$ state



- Usually written as $2 \otimes \bar{2} = 3 \oplus 1$

- 2 stands for a quark doublet
- $\bar{2}$ stands for an antiquark doublet

Light ud mesons

- To show that the state obtained from orthogonality with $|1,0\rangle$ is a singlet we can use ladder operators

$$T_+|0,0\rangle = T_+ \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d}) = \frac{1}{\sqrt{2}}(-u\bar{d} + u\bar{d}) = 0$$

- Similarly

$$T_-|0,0\rangle = 0$$

- A singlet state is a “dead-end” from the point of view of ladder operators

$SU(3)$ flavour

- Extend these ideas to include the strange quark
 - since $m_s(95 \text{ MeV}) > m_u, m_d(2.2, 4.7 \text{ MeV})$ there is **no exact symmetry**
 - but m_s is not very different from m_u, m_d and we can treat the strong interaction and resulting hadron states as if it were symmetric under $u \leftrightarrow d \leftrightarrow s$
 - *note:* any results obtained from this assumption are only **approximate** as the symmetry is not exact
- The assumed uds flavour symmetry can be expressed as

$$\begin{pmatrix} u' \\ d' \\ s' \end{pmatrix} = \hat{U} \begin{pmatrix} u \\ d \\ s \end{pmatrix} = \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ U_{21} & U_{22} & U_{23} \\ U_{31} & U_{32} & U_{33} \end{pmatrix} \begin{pmatrix} u \\ d \\ s \end{pmatrix}$$

$SU(3)$ flavour

- The 3×3 **unitary** matrix depends on **9** complex numbers (**18** real parameters)
 - there are **9** constraints from $\hat{U}^\dagger U = 1$
 - \Rightarrow we can form **$18 - 9 = 9$** linearly independent matrices
 - these matrices form a $U(3)$ group
- As was the case for $U(2)$ one matrix is simply the identity matrix multiplied by a complex phase and is of no interest in the context of flavour symmetry
- The remaining **8** matrices have $\det U = 1$ and form an **$SU(3)$** group
- The **8** matrices and the Hermitian generators are:

$$\vec{T} = \frac{1}{2} \vec{\lambda}$$

$$\hat{U} = e^{i\vec{\alpha} \cdot \vec{T}}$$

$SU(3)$ flavour: u , d , and s

- In $SU(3)$ flavour, the three quark states are represented by

$$u = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad d = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad s = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

- In $SU(3)$, the uds flavour symmetry contains $SU(2)$ ud flavour symmetry which allows us to write the first three matrices

$$\lambda_1 = \begin{pmatrix} \sigma_1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \quad \lambda_2 = \begin{pmatrix} \sigma_2 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \quad \lambda_3 = \begin{pmatrix} \sigma_3 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

- For $u \leftrightarrow d$ we have the following matrices

$u \leftrightarrow d$

$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$SU(3)$ flavour: u , d , and s

- The third component of the isospin is now written as

$$I_3 = \frac{1}{2} \lambda_3$$

with

$$I_3 u = +\frac{1}{2} u, \quad I_3 d = -\frac{1}{2} u, \quad I_3 s = 0$$

- I_3 “counts” the number of u quarks minus the number of d quarks in a state
- As before ladder operators

$$T_{\pm} = \frac{1}{2} (\lambda_1 \pm i \lambda_2)$$

$$d \text{ } \bullet \longleftrightarrow T_{\pm} \bullet \text{ } u$$

$SU(3)$ flavour: u , d , and s

- Now consider the matrices corresponding to the $u \leftrightarrow s$ and $d \leftrightarrow s$

$u \leftrightarrow s$	$\lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	$\lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
$d \leftrightarrow s$	$\lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$	$\lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
			$\lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

- Hence in addition to λ_3 there are two other traceless diagonal matrices
- However, the three diagonal matrices are not independent

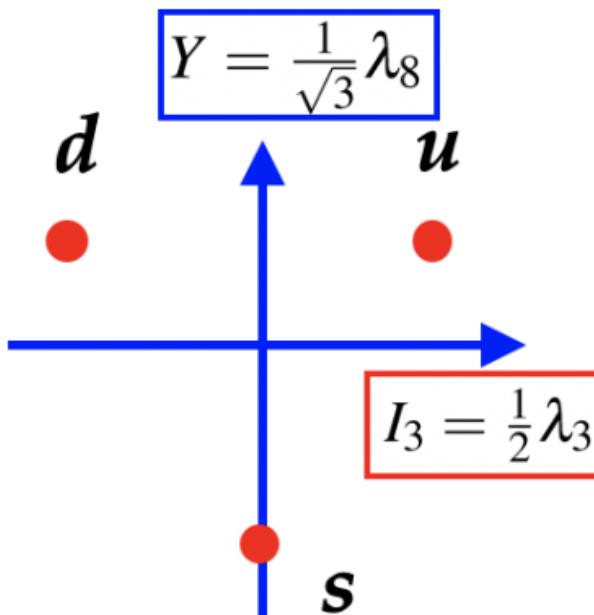
$SU(3)$ flavour: u , d , and s

- Define the eighth matrix, λ_8 , as a linear combination

$$\lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} + \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

which specifies the “vertical position” in the 2D plane

- We only need two axes (quantum numbers) to specify a state in the 2D plane: (I_3, Y)



$SU(3)$ flavour: u , d , and s

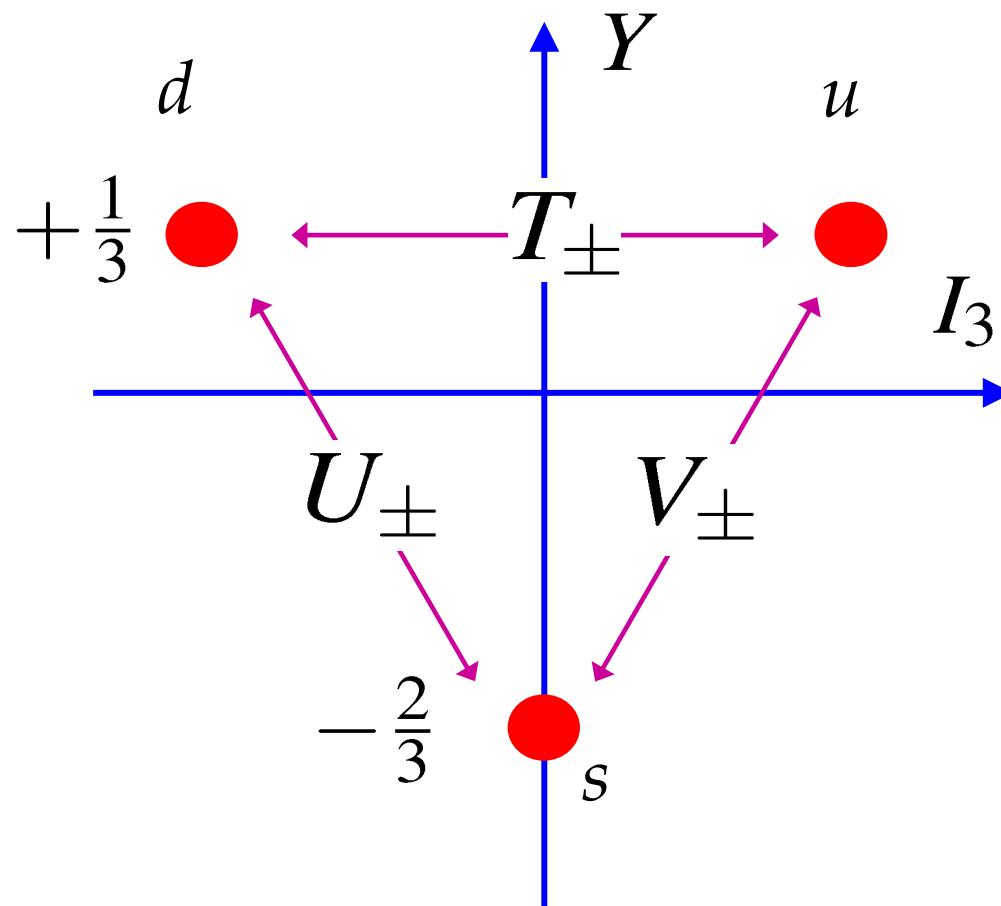
- The other 6 matrices form 6 ladder operators which step between the states

$$T_{\pm} = \frac{1}{2}(\lambda_1 \pm i\lambda_2)$$

$$V_{\pm} = \frac{1}{2}(\lambda_4 \pm i\lambda_5)$$

$$U_{\pm} = \frac{1}{2}(\lambda_6 \pm i\lambda_7)$$

$$I_3 = \frac{1}{2}\lambda_3 \text{ and } Y = \frac{1}{\sqrt{3}}\lambda_8$$



$SU(3)$ flavour: u , d , and s

- The eight Gell-Mann matrices

$u \leftrightarrow d$

$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$u \leftrightarrow s$

$$\lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$d \leftrightarrow s$

$$\lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

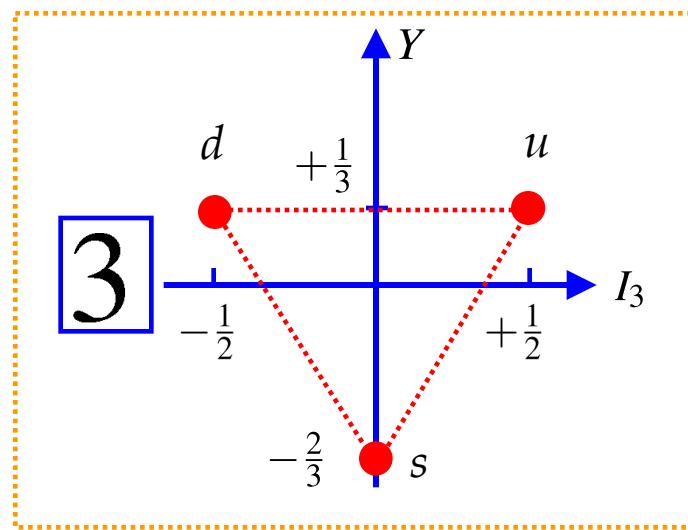
$$\lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}$$

$$\lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$

$$\lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Quarks and antiquarks in $SU(3)$ flavour

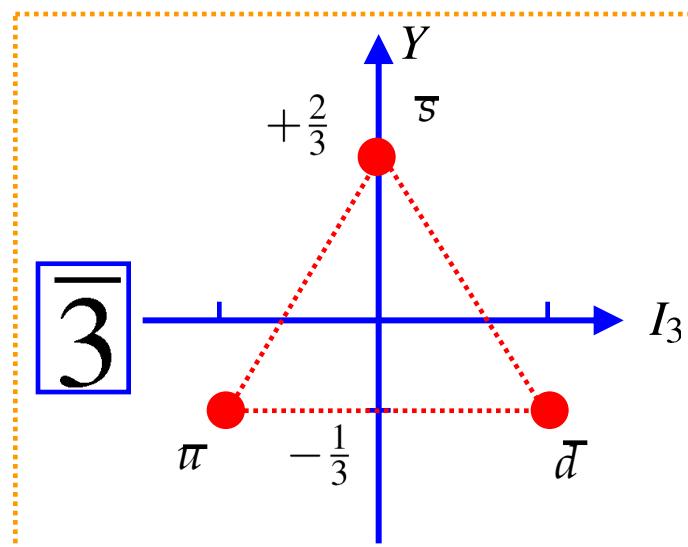


Quarks

$$I_3 u = +\frac{1}{2} u; \quad I_3 d = -\frac{1}{2} d; \quad I_3 s = 0$$

$$Y u = +\frac{1}{3} u; \quad Y d = +\frac{1}{3} d; \quad Y s = -\frac{2}{3} s$$

- The antiquarks have opposite $SU(3)$ flavour quantum numbers



Antiquarks

$$I_3 \bar{u} = -\frac{1}{2} \bar{u}; \quad I_3 \bar{d} = +\frac{1}{2} \bar{d}; \quad I_3 \bar{s} = 0$$

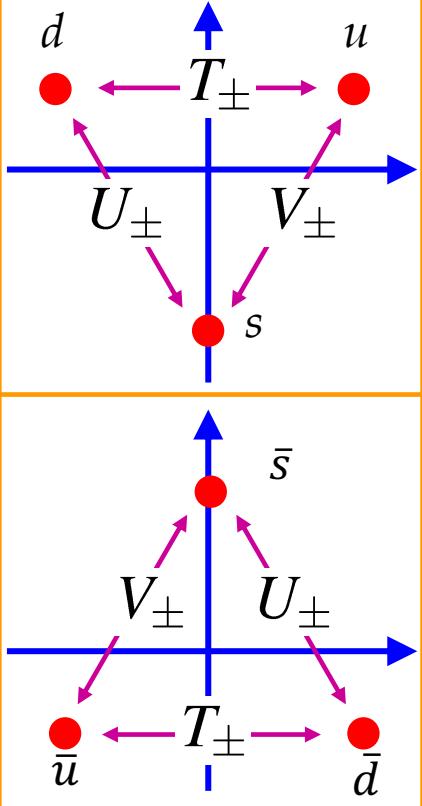
$$Y \bar{u} = -\frac{1}{3} \bar{u}; \quad Y \bar{d} = -\frac{1}{3} \bar{d}; \quad Y \bar{s} = +\frac{2}{3} \bar{s}$$

$SU(3)$ ladder operators

- The $SU(3)$ uds flavour symmetry contains ud , us , and ds $SU(2)$ symmetries
- Consider the $u \leftrightarrow s$ symmetry “V-spin”, which has the associated $s \rightarrow u$ ladder operator

$$V_+ = \frac{1}{2}(\lambda_4 + i\lambda_5) = \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \frac{i}{2} \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$V_+ s = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = +u$$

$SU(3)$ ladder operators
$T_{\pm} = \frac{1}{2}(\lambda_1 \pm i\lambda_2)$
$V_{\pm} = \frac{1}{2}(\lambda_4 \pm i\lambda_5)$
$U_{\pm} = \frac{1}{2}(\lambda_6 \pm i\lambda_7)$


$SU(3)$ ladder operators

- The effects of the six ladder operators are

$$T_+ d = u; \quad T_- u = d;$$

$$V_+ s = u; \quad V_- u = s;$$

$$U_+ s = d; \quad U_- d = s;$$

$$T_+ \bar{u} = -\bar{d}; \quad T_- \bar{d} = -\bar{u}$$

$$V_+ \bar{u} = -\bar{s}; \quad V_- \bar{s} = -\bar{u}$$

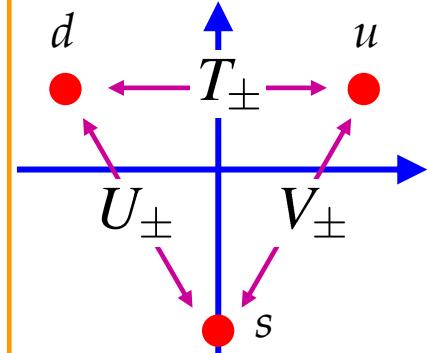
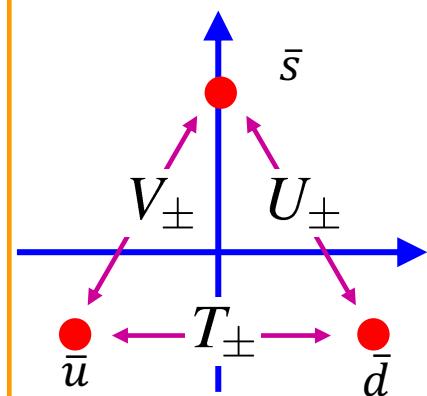
$$U_+ \bar{d} = -\bar{s}; \quad U_- \bar{s} = -\bar{d}$$

$SU(3)$ ladder operators

$$T_{\pm} = \frac{1}{2}(\lambda_1 \pm i\lambda_2)$$

$$V_{\pm} = \frac{1}{2}(\lambda_4 \pm i\lambda_5)$$

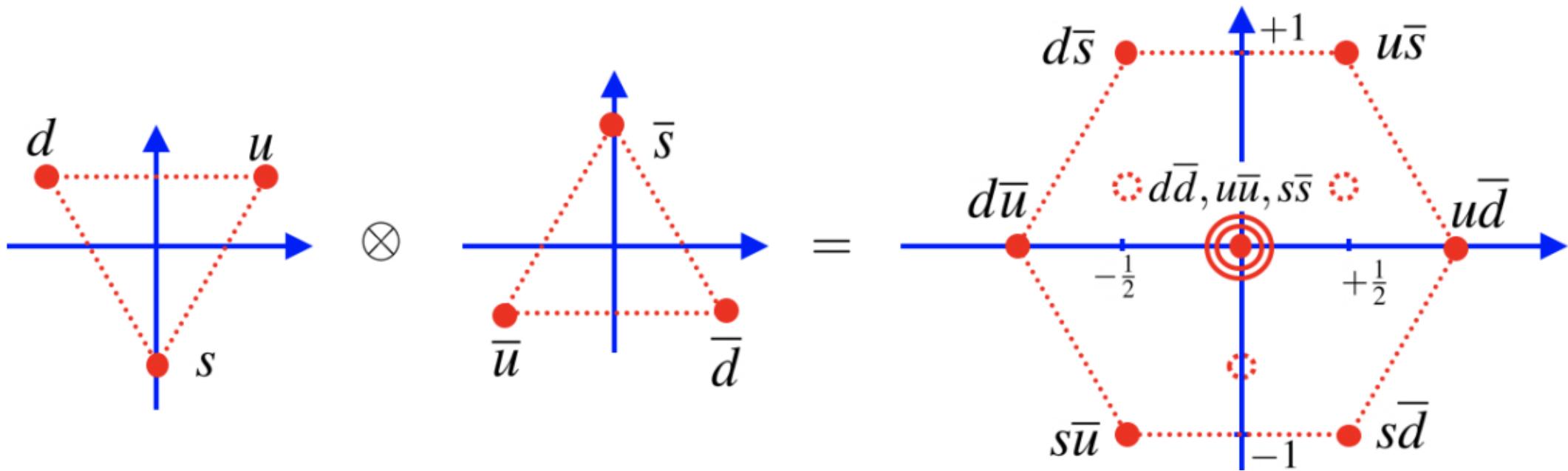
$$U_{\pm} = \frac{1}{2}(\lambda_6 \pm i\lambda_7)$$



- All other combinations give 0

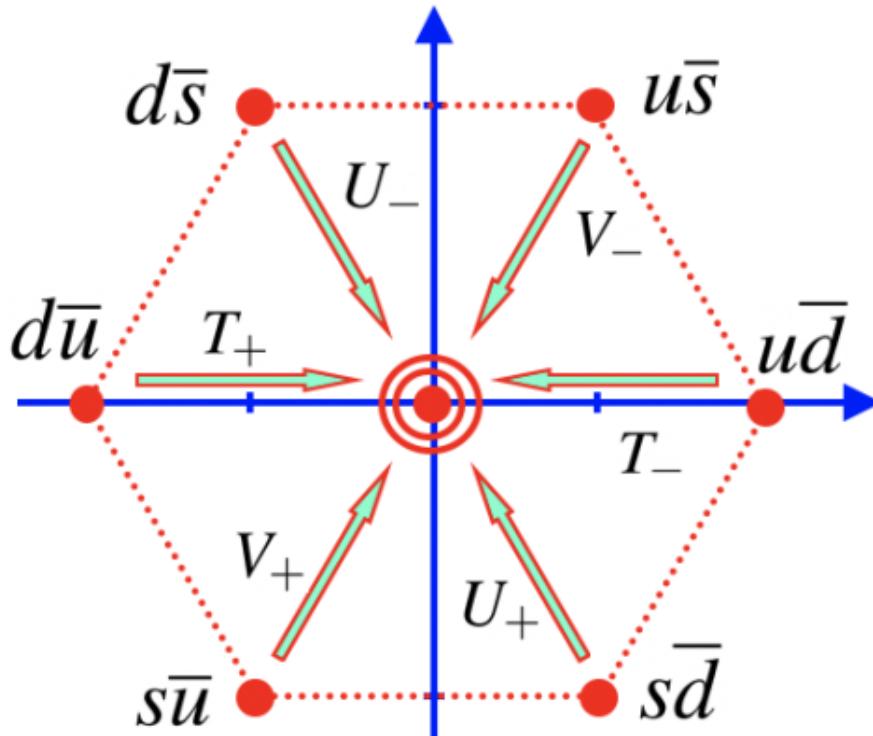
Light uds mesons

- Use the ladder operators to construct uds mesons from the nine possible $q\bar{q}$ states



- The three central states, having $Y = 0$ and $I_3 = 0$ can be obtained using the ladder operators and orthogonality

Light uds mesons



- Starting from the outer states we can reach the center in six ways

$$T_+ |d\bar{u}\rangle = |u\bar{u}\rangle - |d\bar{d}\rangle \quad T_- |u\bar{d}\rangle = |d\bar{d}\rangle - |u\bar{u}\rangle$$
$$V_+ |s\bar{u}\rangle = |u\bar{u}\rangle - |s\bar{s}\rangle \quad V_- |u\bar{s}\rangle = |s\bar{s}\rangle - |u\bar{u}\rangle$$
$$U_+ |s\bar{d}\rangle = |d\bar{d}\rangle - |s\bar{s}\rangle \quad U_- |d\bar{s}\rangle = |s\bar{s}\rangle - |d\bar{d}\rangle$$

- Only **two** of these six states are linearly independent
- But there are **three** states with $Y = 0$ and $I_3 = 0$
- One state is not part of the same multiplet \Rightarrow **cannot be reached with ladder operators**

Light uds mesons

- First form two linearly independent orthogonal states from

$$|u\bar{u}\rangle - |d\bar{d}\rangle \quad |u\bar{u}\rangle - |s\bar{s}\rangle \quad |d\bar{d}\rangle - |s\bar{s}\rangle$$

- If the $SU(3)$ flavour symmetry were exact, the choice of states wouldn't matter
- However, $m_{\bar{s}} > m_{\bar{u}}, m_{\bar{d}}$ and the symmetry is only approximate
- **Experimentally** observe three light mesons with $m \sim 140$ MeV: π^+, π^0, π^-
- **Identify one state** (the π^0) with the isospin triplet (derived previously)

$$\psi_1 = \frac{1}{\sqrt{2}} (u\bar{u} - d\bar{d})$$

Light uds mesons

- The second state can be obtained by taking the linear combination of the other two states which is orthogonal to the π^0

$$\psi_2 = \alpha(u\bar{u} - s\bar{s}) + \beta(d\bar{d} - s\bar{s})$$

with orthogonality:

$$\langle \psi_1 | \psi_2 \rangle = 0, \quad \langle \psi_2 | \psi_2 \rangle = 1$$

$$\psi_2 = \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} - 2s\bar{s})$$

- The final state (which is not part of the same multiplet) can be obtained by requiring it to be orthogonal to ψ_1 and ψ_2

$$\psi_3 = \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} + s\bar{s}) - \text{singlet}$$

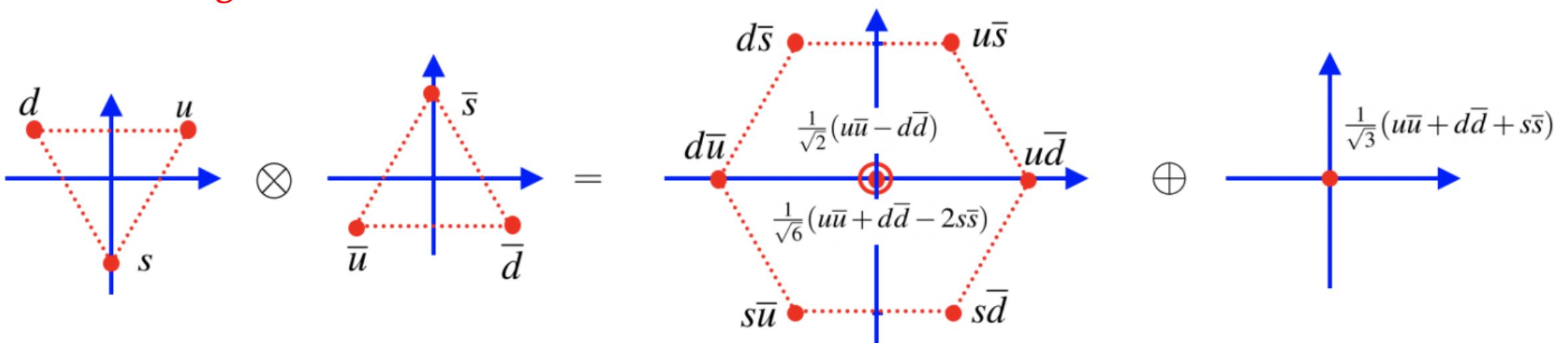
Light uds mesons

- It is easy to check that ψ_3 is a singlet state using the ladder operators

$$T_+ \psi_3 = T_- \psi_3 = U_+ \psi_3 = U_- \psi_3 = V_+ \psi_3 = V_- \psi_3 = 0$$

which confirms that $\psi_3 = \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} + s\bar{s})$ is a “flavourless” singlet

- Therefore, the combination of quark and antiquark yields nine states which break down into an **octet** and a **singlet**



- In the language of group theory: $3 \otimes \bar{3} = 8 \oplus 1$

Light uds mesons

- Compare with combinations of two spin-half particles $2 \otimes \bar{2} = 3 \oplus 1$

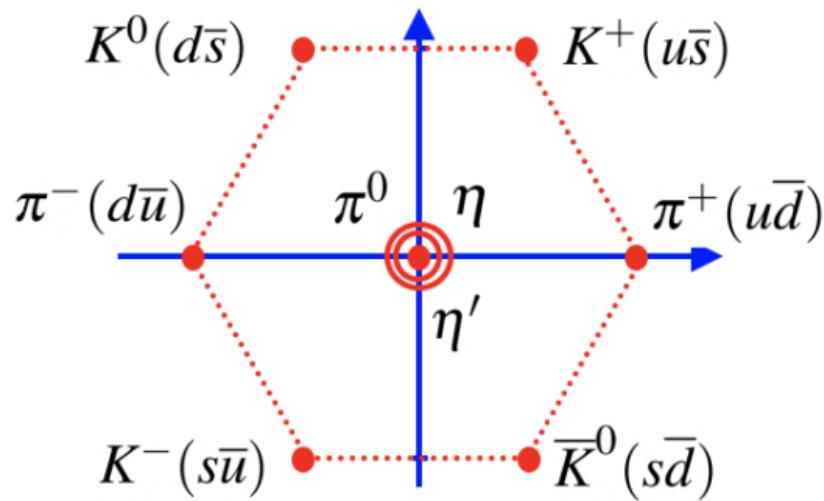
Triplet of spin-one states: $|1, -1\rangle, |1, 0\rangle, |1, +1\rangle$

Singlet of spin-one state: $|0, 0\rangle$

- These spin **triplet** states are connected by ladder operators just as the meson uds **octet** states are connected by $SU(3)$ ladder operators
- The singlet state carries no angular momentum – in this sense the $SU(3)$ **flavour singlet** is “flavourless”

Pseudoscalar mesons ($L = 0, S = 0, J = 0, P = -1$)

- Because $SU(3)$ flavour is only approximate, the physical states with $I_3 = 0, Y = 0$ can be mixtures of the octet and singlet states
- Empirically we find:



$$\pi^0 = \frac{1}{\sqrt{2}}(u\bar{u} - d\bar{d})$$

$$\eta \approx \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} - 2s\bar{s})$$

$$\eta' \approx \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s}) \rightarrow \text{singlet}$$

Masses:

$$\pi^\pm : 140 \text{ MeV}$$

$$K^\pm : 494 \text{ MeV}$$

$$\eta : 549 \text{ MeV}$$

$$\pi^0 : 135 \text{ MeV}$$

$$K^0/\bar{K}^0 : 498 \text{ MeV}$$

$$\eta' : 958 \text{ MeV}$$

$$\rho^\pm : 770 \text{ MeV}$$

$$K^{*\pm} : 892 \text{ MeV}$$

$$\omega : 782 \text{ MeV}$$

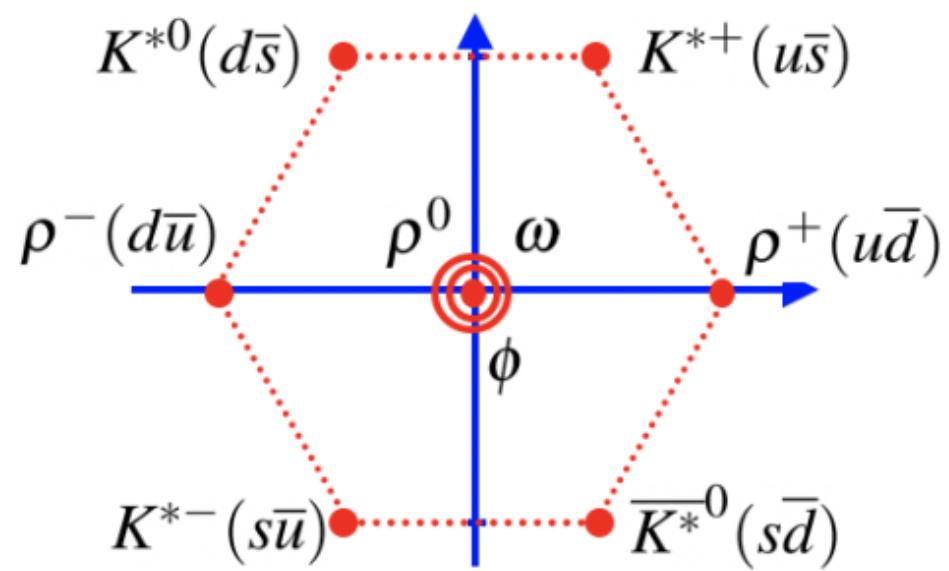
$$\rho^0 : 770 \text{ MeV}$$

$$K^{*0}/\bar{K}^{*0} : 896 \text{ MeV}$$

$$\phi : 1020 \text{ MeV}$$

Vector mesons ($L = 0, S = 1, J = 1, P = -1$)

- For the vector mesons the physical states are found to be approximately “ideally mixed”



$$\rho^0 = \frac{1}{\sqrt{2}} (u\bar{u} - d\bar{d})$$

$$\omega \approx \frac{1}{\sqrt{2}} (u\bar{u} + d\bar{d})$$

$$\phi \approx s\bar{s}$$

Masses:

$$\pi^\pm : 140 \text{ MeV}$$

$$K^\pm : 494 \text{ MeV}$$

$$\eta : 549 \text{ MeV}$$

$$\pi^0 : 135 \text{ MeV}$$

$$K^0/\bar{K}^0 : 498 \text{ MeV}$$

$$\eta' : 958 \text{ MeV}$$

$$\rho^\pm : 770 \text{ MeV}$$

$$K^{*\pm} : 892 \text{ MeV}$$

$$\omega : 782 \text{ MeV}$$

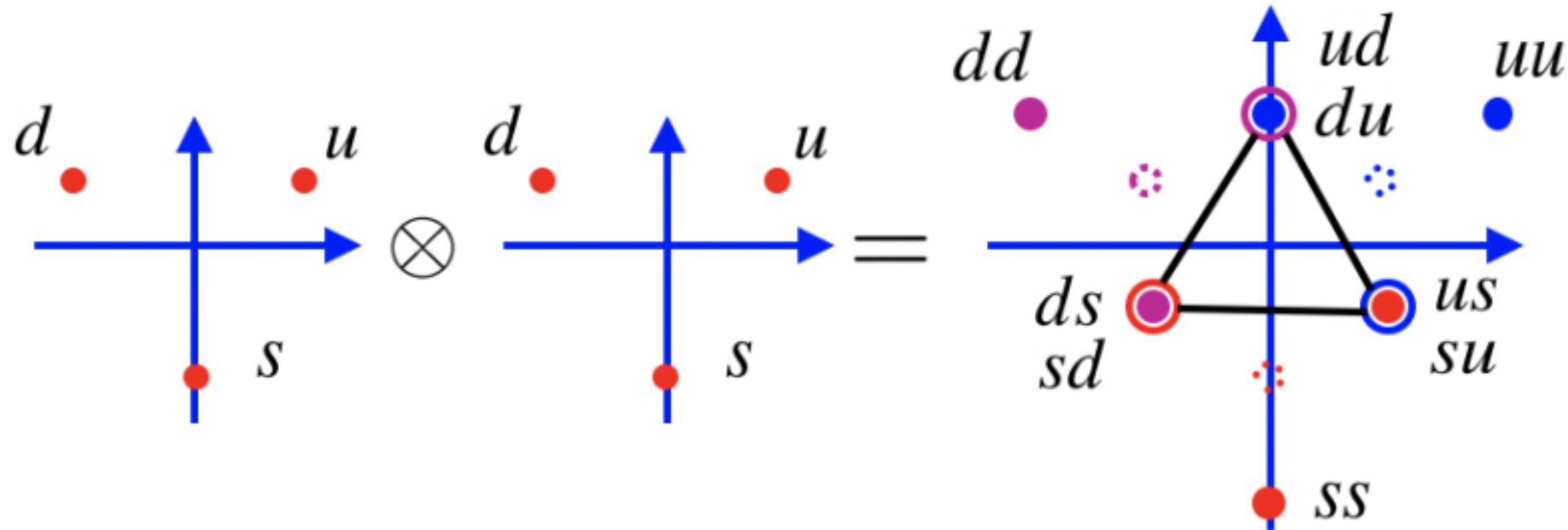
$$\rho^0 : 770 \text{ MeV}$$

$$K^{*0}/\bar{K}^{*0} : 896 \text{ MeV}$$

$$\phi : 1020 \text{ MeV}$$

Combining uds quarks to form baryons

- We already saw that constructing baryon states is a fairly tedious process when we derived the proton wavefunction
- Concentrate on multiplet structure rather than deriving all the wavefunctions
- Everything that is done here is relevant to the treatment of color in the future (next semester)
- Once again start by combining two quarks



Combining uds quarks to form baryons

- Yields a symmetric sextet and antisymmetric triplet $3 \otimes 3 = 6 \oplus \bar{3}$: same “pattern” as the antiquark representation

$$\begin{array}{c} \text{SYMMETRIC} \quad \text{ANTI-SYMMETRIC} \\ \text{---} \quad \text{---} \\ \text{---} \quad \text{---} \end{array}$$

Diagram illustrating the tensor product of two $3 \otimes 3$ representations. On the left, two triangles (one red, one black) are combined with a tensor product symbol (\otimes). This results in a large triangle with red dots at the top and bottom vertices and a black dot at the center. The top-left vertex is labeled dd , the top-right uu , and the bottom ss . Above this triangle is the expression $\frac{1}{\sqrt{2}}(ud + du)$. To the right of the large triangle is a smaller triangle with red dots at all vertices, labeled $\frac{1}{\sqrt{2}}(ud - du)$. Below the large triangle is a plus sign (\oplus).

- Now add the third quark

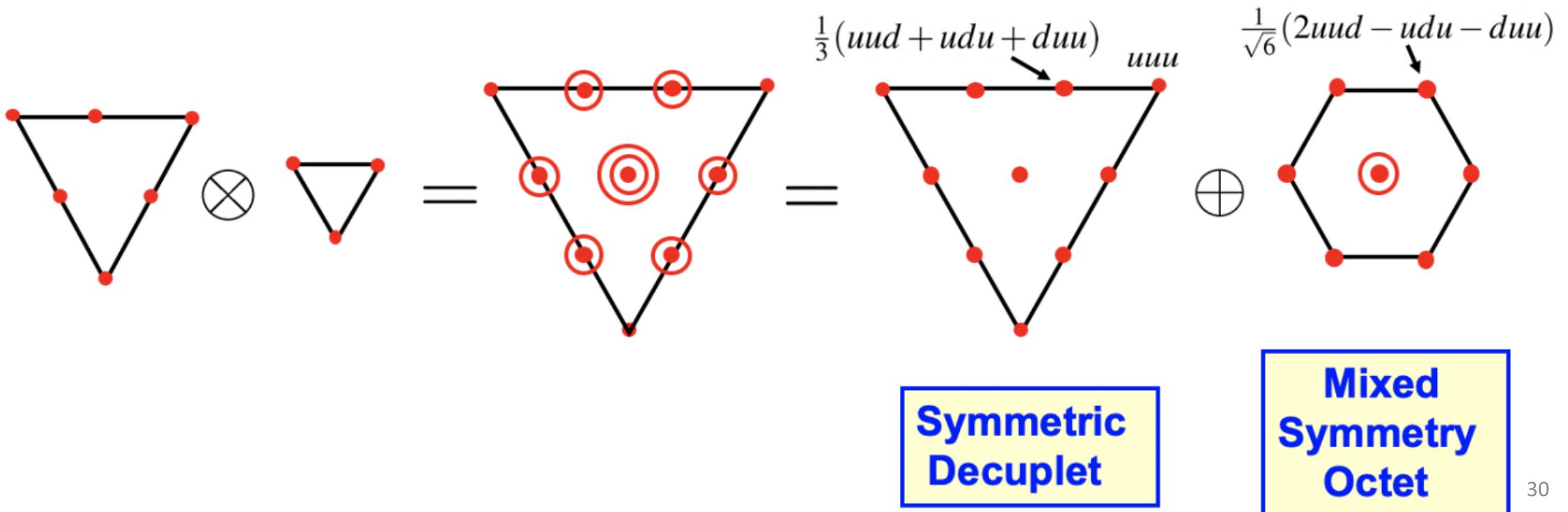
$$\begin{array}{c} \text{---} \quad \text{---} \\ \text{---} \quad \text{---} \\ \text{---} \quad \text{---} \end{array}$$

Diagram illustrating the tensor product of three $3 \otimes 3$ representations. On the left, three triangles (one red, two black) are combined with two tensor product symbols (\otimes). This results in a large triangle with red dots at the top and bottom vertices and a black dot at the center. To the right of the large triangle is a plus sign (\oplus). To the right of the plus sign is a smaller triangle with red dots at all vertices. To the right of the large triangle is a tensor product symbol (\otimes) followed by a single triangle (one red, one black).

Combining uds quarks to form baryons

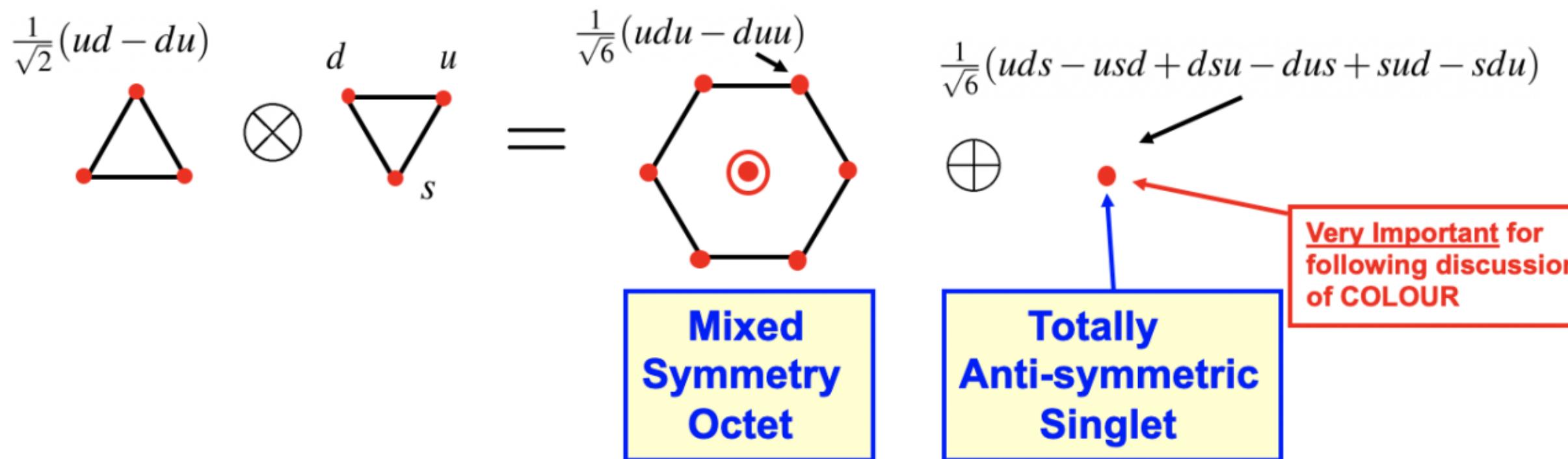
- Best considered in two parts, building on the sextet and triplet
- Again, concentrate on the multiplet structure (for the wavefunction discussions refer to the discussion of proton wavefunction)

1. Building on the sextet: $3 \otimes 6 = 10 \oplus 8$



Combining uds quarks to form baryons

2. Building on the triplet: $3 \otimes 6 = 8 \oplus 1$ (same as the case of uds mesons)



Combining uds quarks to form baryons

- We can verify the singlet wavefunction is indeed a singlet by using ladder operators

$$\psi_{\text{singlet}} = \frac{1}{\sqrt{6}}(uds - usd + dsu - dus + sud - sdu)$$

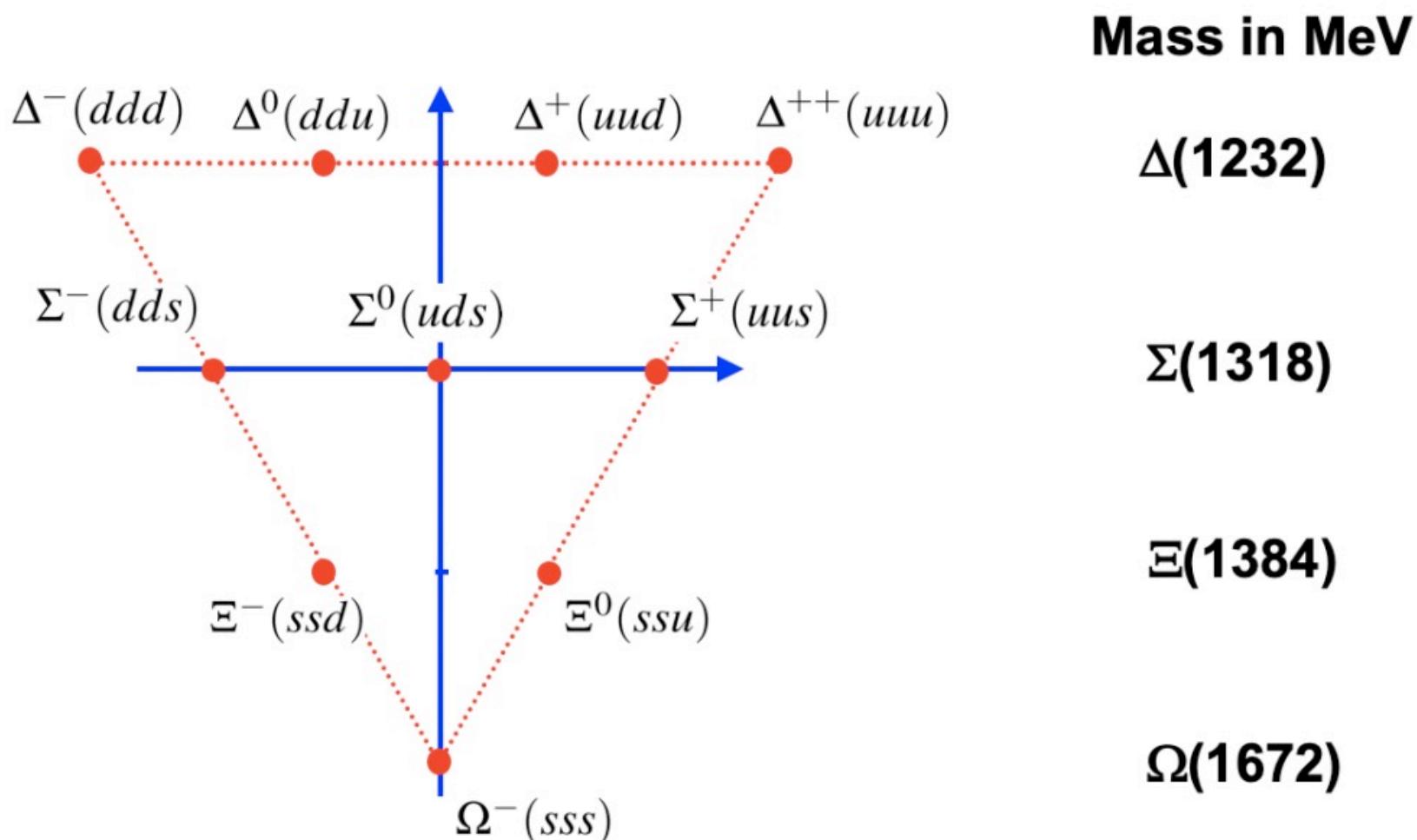
$$T_+ \psi_{\text{singlet}} = \frac{1}{\sqrt{6}}(uus - usu + usu - uus + suu - suu) = 0$$

- In summary, the combination of three uds quarks decomposes into:

$$3 \otimes 3 \otimes 3 = 3 \otimes \left(6 \oplus 3 \right) = 10 \oplus 8 \oplus 8 \oplus 1$$

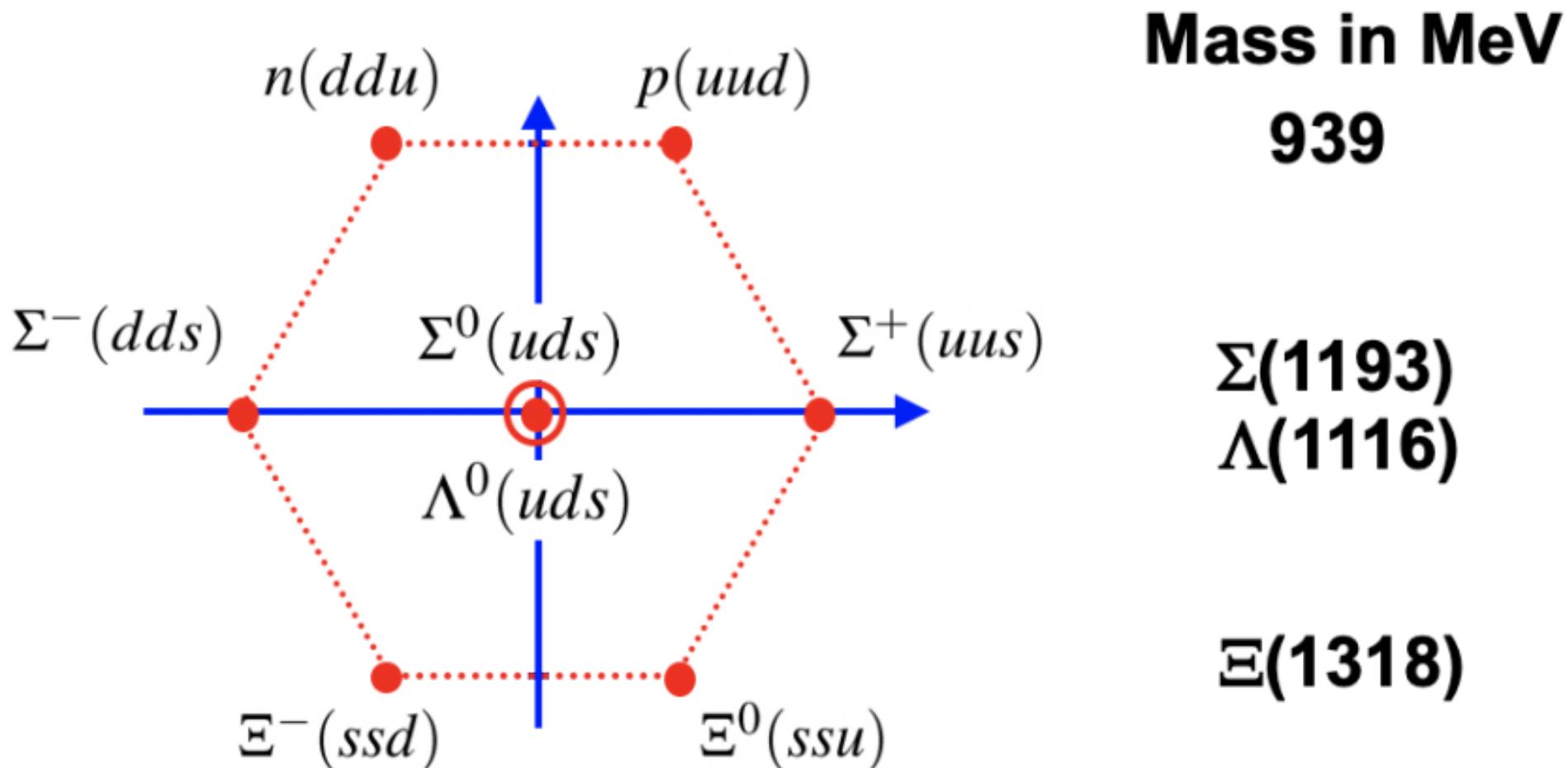
Baryon decuplet ($L = 0, S = 3/2, J = 3/2, P = +1$)

- The baryon states ($L = 0$) are the **spin-3/2** decuplet of symmetric flavour and symmetric spin wavefunctions $\phi(S)\chi(S)$



Baryon octet ($L = 0, S = 1/2, J = 1/2, P = +1$)

- The **spin-1/2** octet is formed from mixed-symmetry flavour and mixed-symmetry spin wavefunctions
$$\alpha\phi(M_S)\chi(M_S) + \beta\phi(M_A)\chi(M_A)$$
(see previous discussion of proton to see how to obtain wavefunctions)



Summary of Lecture 12

Main learning outcomes

- Using the approximate $SU(3)$ symmetry of the Standard Model to construct meson and baryon states
- How to combine quarks (u, d, s) and antiquarks ($\bar{u}, \bar{d}, \bar{s}$) into mesons and baryons
- Classification of hadrons based on their quantum numbers and link to experiment